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ABSTRACT

The increasing volume and complexity of cybersecurity attacks present significant
challenges for effective threat detection and response. This study applies
unsupervised machine learning techniques K-Means and DBSCAN to analyze 40,000
cyberattack records containing attributes such as anomaly scores, attack types,
severity levels, and geographic locations. The goal is to uncover latent structures and
regional patterns within the data that can inform threat intelligence and response
strategies. Descriptive statistics and feature correlation analysis were performed as
a foundation for clustering. K-Means clustering, guided by Elbow and Silhouette
methods, identified three distinct clusters with balanced distributions and moderate
separation (Silhouette Score = 0.23893; Davies-Bouldin Index = 1.33). In contrast,
DBSCAN revealed dense pockets of attacks and successfully isolated noise points,
capturing regions with higher anomaly severity. Geo-spatial visualizations and
cluster-specific summaries showed that both algorithms provide valuable but
complementary perspectives: K-Means offers interpretable groupings for strategic
profiling, while DBSCAN excels at isolating high-risk outliers and concentrated attack
behaviors. The findings demonstrate the utility of clustering-based approaches in
extracting actionable insights from complex cyber threat data, paving the way for
adaptive and region-sensitive cybersecurity defense frameworks.

Keywords Cybersecurity, Clustering, K-Means, DBSCAN, Geo-spatial Analysis, Threat
Intelligence, Anomaly Detection

Introduction

In the era of digital transformation, cybersecurity has emerged as a paramount
concern for governments, corporations, and individuals alike [1]. The rapid
expansion of internet-connected devices, cloud-based services, and digital
infrastructures has not only enabled unprecedented convenience and
productivity but has also introduced a complex and ever-evolving threat
landscape [2]. Cyberattacks have become more frequent, targeted, and
sophisticated—ranging from large-scale data breaches and ransomware
incidents to stealthy advanced persistent threats (APTs) [3]. These attacks can
disrupt essential services, compromise sensitive data, and cause significant
economic and reputational damage. As organizations become increasingly
reliant on digital technologies, the ability to detect, understand, and respond to
cyber threats in a timely and accurate manner is more critical than ever [4].
Traditional cybersecurity defenses often rely on signature-based detection and
rule-based systems, which struggle to keep up with zero-day exploits and novel
attack vectors [5]. To address these limitations, the cybersecurity community
has turned to data-driven approaches that leverage machine learning and
artificial intelligence. Among these, unsupervised learning—and specifically
clustering algorithms—has shown great promise in discovering latent patterns
in large volumes of unlabeled security data. Clustering techniques can help
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analysts group similar attack behaviors, identify abnormal patterns, and
visualize the distribution of threats across time and space without the need for
manual labeling. These capabilities are essential in transforming raw security
logs into actionable insights for threat hunting, incident response, and risk
mitigation.

Two widely used clustering methods are K-Means and DBSCAN (Density-
Based Spatial Clustering of Applications with Noise). K-Means is a centroid-
based algorithm that partitions data into a pre-defined number of clusters by
minimizing intra-cluster variance. It is computationally efficient and yields easily
interpretable results but assumes spherical cluster shapes and struggles with
noise. In contrast, DBSCAN is a density-based algorithm that groups closely
packed points and designates outliers as noise, making it ideal for identifying
irregular and anomalous patterns in complex data. Importantly, DBSCAN does
not require prior knowledge of the number of clusters, which makes it particularly
useful in exploratory analyses of heterogeneous cybersecurity data.

This study explores the effectiveness of K-Means and DBSCAN in analyzing a
real-world dataset consisting of 40,000 cybersecurity attack records. Each
record contains key attributes such as anomaly score, severity level, attack type,
and geo-location (city and region), allowing for both behavioral and spatial
clustering. The research is driven by three main objectives: (1) to perform
descriptive and statistical analysis of cyberattack features; (2) to apply and
evaluate K-Means and DBSCAN in grouping attack behaviors and geo-
locations; and (3) to compare the clustering results using visual and quantitative
metrics, including Silhouette Score and Davies-Bouldin Index. By integrating
geo-aware clustering with traditional feature-based analysis, this research aims
to contribute a novel framework for threat intelligence mapping—a visual and
analytical representation of how cyber threats are distributed, evolve, and
concentrate in specific regions. Such insights can help cybersecurity
professionals prioritize mitigation efforts, allocate resources efficiently, and
develop adaptive defense mechanisms that are sensitive to regional and
behavioral risk variations.

In summary, this paper demonstrates how unsupervised learning, specifically K-
Means and DBSCAN, can be effectively utilized to uncover meaningful clusters
in cyberattack data. The results of this analysis support the development of more
responsive, context-aware cybersecurity strategies capable of addressing the
challenges of a dynamic and distributed threat environment.

Literature Review

The use of machine learning in cybersecurity has gained considerable traction
as traditional rule-based systems struggle to detect novel and sophisticated
cyber threats. Among the techniques employed, unsupervised learning,
particularly clustering, has been recognized as an effective tool for grouping
malicious behaviors and uncovering hidden patterns in unlabeled datasets.
Clustering methods such as K-Means and DBSCAN are widely used in anomaly
detection, intrusion detection systems (IDS), and cyber threat profiling.

The K-Means algorithm has been employed in several cybersecurity
applications due to its simplicity and interpretability. Zhang et al. [6] used K-
Means to detect abnormal network behavior in loT environments, demonstrating
that the algorithm could successfully group similar attack traffic. In [7], a
clustering-based hybrid intrusion detection system combining K-Means and
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classification methods improved detection accuracy for DDoS attacks. Algahtani
et al. [8] applied K-Means to cluster log data from security information and event
management (SIEM) systems, supporting real-time alert triage. However, K-
Means assumes convex cluster shapes and requires prior knowledge of the
number of clusters, making it less suitable for irregular or noisy attack patterns.

To address this limitation, DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) has been increasingly used in cybersecurity studies. Its
ability to detect clusters of arbitrary shape and isolate noise points makes it ideal
for discovering outliers in attack datasets. Suthaharan [9] applied DBSCAN to
isolate anomalies in IDS datasets, identifying stealthy attacks that were not
captured by traditional classifiers. Similarly, Sharma and Sahay [10] utilized
DBSCAN in wireless sensor networks (WSNSs) to identify localized attack zones
and false data injections. Other works, such as that by Uddin et al. [11],
demonstrated that DBSCAN performed better than K-Means when applied to
network log datasets with noise and overlapping patterns.

Comparative analyses of clustering techniques have also been conducted. A
study by Garcia et al. [12] evaluated the performance of K-Means, DBSCAN,
and hierarchical clustering in detecting attacks in the UNSW-NB15 dataset. The
findings indicated that DBSCAN was more effective in detecting anomalous
behaviors, while K-Means was more scalable for large datasets. Another
comparative study by Shone et al. [13] examined deep autoencoders and
clustering methods, highlighting that unsupervised models can outperform
supervised ones when labeled data is limited.

In recent years, research has started to explore the integration of geospatial
features in cyber threat analysis. Ahmed et al. [14] used IP geolocation to cluster
phishing attacks by country, revealing geographic hotspots of malicious activity.
In [15], the authors visualized attack origins using heatmaps and clustering to
support situational awareness dashboards. Lee et al. [16] proposed a threat
mapping system based on clustering geo-tagged attacks, improving response
prioritization for security operation centers (SOCs). However, many of these
studies treat location as an auxiliary feature rather than a primary clustering
dimension.

Geo-aware clustering has been underexplored but presents a valuable direction
for understanding how cyber threats concentrate spatially. In [17], the authors
combined DBSCAN with latitude-longitude metadata to detect regionally
concentrated malware campaigns. Similarly, Kumar et al. [18] introduced a
location-sensitive anomaly detection model that improved the classification of
APT campaigns by clustering IP activity in geographic clusters. Despite these
advancements, few studies compare both behavioral and geospatial clustering
comprehensively using multiple algorithms.

This research builds upon and extends prior work by combining anomaly scores,
attack severity, and geo-location data to perform a dual-clustering analysis using
both K-Means and DBSCAN. By doing so, the study contributes a geo-aware
framework for visualizing and quantifying the regional concentration of cyber
threats, providing a foundation for improved threat intelligence mapping and
regionally adaptive cybersecurity strategies.

Methods

This study employed a systematic methodology to perform clustering on
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cyberattack data using both K-Means and DBSCAN, with emphasis on geo-
spatial analysis. The dataset consisted of 40,000 cybersecurity incident records,
including key features such as anomaly_score, severity, attack_type,
packet_length, source port, destination_port, and geo-location. Initial data
preprocessing involved the removal of incomplete records and transformation of
categorical variables attack type and severity through one-hot and label
encoding respectively. To standardize the numerical variables for clustering,
Min-Max Normalization was applied. This ensures that all features lie within the
same scale [0, 1] and is calculated using the following formula [19]:

x —min(x)

!

(1)

- max(x) — min(x)

After preprocessing, a correlation matrix was analyzed to select features that
exhibit high variance and low collinearity. The final feature set included scaled
anomaly_score, encoded attack_type, severity level, and port and packet
statistics. Geo-location fields were transformed into frequency counts to capture
regional attack densities. Dimensionality reduction was performed using
Principal Component Analysis (PCA), allowing the data to be projected onto a
2-dimensional plane for visualization while preserving as much variance as
possible.

The first clustering method applied was K-Means, which partitions the dataset
into k clusters by minimizing the total within-cluster sum of squares. The
objective function that K-Means attempts to minimize is given by [20]:

1=i2ux—uin2 @)

i=1 x€C;

C; The set of points assigned to a cluster i and y; is the centroid of that cluster.
The optimal number of clusters k was determined using the Elbow Method by
plotting the total within-cluster sum of squared errors (SSE) against various
values of k and validated using the Silhouette Score, defined as [21]:

b(@) — a(i)
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(3)

a(i) is the average intra-cluster distance and b(i) is the minimum average
distance of a point i to points in another cluster.

In contrast, DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) was applied to identify dense groupings without requiring the number of
clusters as input. DBSCAN defines a cluster as a set of density-connected
points. Two main parameters were tuned: ¢, the maximum distance between
two points to be considered neighbors, and minPts, the minimum number of
points required to form a dense region. Unlike K-Means, DBSCAN can detect
outliers, which are marked as noise, and its clustering is robust to non-spherical
cluster shapes.

To evaluate and compare the clustering performance, two internal validation
metrics were used: the Silhouette Score (as defined above) and the Davies-
Bouldin Index (DBI), which evaluates the average similarity between each
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cluster and its most similar one. A lower DBI value indicates better clustering
and is computed as [22]:

k
1 4 0
DBIl=— E max<al GJ) (4)
k —~ J#L d(Ci,Cj)

o; is the average distance between each point in cluster i and its centroid c;, and
d(c; ¢;) is the distance between centroids of clusters i and j.

To support geo-aware analysis, the resulting clusters were mapped onto their
corresponding geographic locations using scatter plots and hexbin
visualizations, enabling regional risk pattern identification. All analyses were
conducted in Python 3.11 using libraries such as scikit-learn, pandas, matplotlib,
seaborn, and plotly.

Result

This section elaborates on the results of the clustering analysis conducted using
two unsupervised learning algorithms, K-Means and DBSCAN, on the
cybersecurity attack dataset. The analysis is structured into five subsections: (1)
a descriptive statistical overview of the dataset, (2) an assessment of feature
correlations to support cluster input selection, (3) the outcomes of K-Means
clustering, (4) the outcomes of DBSCAN clustering, and (5) a comparative
evaluation between the two clustering methods based on key performance
metrics and interpretability. The dataset comprises 40,000 records of
cybersecurity incidents, each annotated with various attributes including
Anomaly Score, Severity Level, Attack Type, Geo-location, Source and
Destination Ports, and Packet Length. These incidents are distributed across a
wide range of geographical locations in India and span a spectrum of severity
levels. The preprocessing stage involved standardizing numerical features and
transforming geo-location strings into simulated latitude and longitude values for
spatial analysis.

Table 1 provides summary statistics for three critical numerical features—
Source Port, Destination Port, and Packet Length—that were selected for
clustering based on their relevance to network-level attack characterization. The
descriptive statistics include measures of central tendency (mean, median),
dispersion (standard deviation, interquartile range), and range (minimum to
maximum), offering a foundational understanding of the distribution and
variability within the dataset. This preliminary insight is essential to inform
feature selection and scaling strategies for subsequent clustering procedures.
In addition to the tabular summary, the spatial distribution of incidents across
geo-locations is visualized in Figure 2, which highlights hotspot regions with
unusually high attack frequencies. This geographic concentration is further
quantified in Table 2, listing the top 10 locations with the highest incident counts.
These initial explorations set the stage for applying clustering algorithms that
aim to uncover latent groupings and spatial patterns in cyberattack behaviors.

Table 1 Descriptive Statistics of Key Features

Feature Count Mean g:\i, Min 25% Median 75% Max

Source 40,000 32,970 18560 1,027 16,851 32,856 48,928 65,530
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Port
Desggft“on 40,000 33,151 18,575 1,024 17,095 33,005 49,287 65535
Packet 40000 78145 41604 64 420 782 1,143 1,500
Length

To complement the numerical summary provided in Table 1, Figure 2 presents
a bar chart that visualizes the frequency of cybersecurity attacks across all
unique geo-locations included in the dataset. This visual representation enables
a clearer understanding of the spatial distribution of attacks by aggregating the
number of incidents associated with each geographic region.

The figure reveals a pronounced concentration of attack occurrences in a
relatively small number of locations, indicating the presence of cyberattack
hotspots. These regions, such as Ghaziabad, Kalyan-Dombivli, and Motihari,
consistently exhibit high incident counts, suggesting underlying vulnerabilities or
patterns of repeated targeting. Such spatial clustering may reflect regional
disparities in cybersecurity infrastructure, exposure levels, or monitoring
capabilities.

This geospatial insight is crucial for threat intelligence and resource allocation,
as it highlights specific areas that warrant increased surveillance or defensive
measures. The findings depicted in Figure 2 are further substantiated by Table
2, which ranks the top 10 geo-locations by attack frequency, thereby reinforcing
the observed patterns and offering actionable intelligence for cybersecurity
professionals.

Ghaziabad, Meghalaya

Kalyan-Dombivli, |harkhand

Ghaziabad, Uttarakhand

Ghaziabad, Tripura

Motihari, Odisha

Srikakulam, Uttarakhand

Geo-location

Yamunanagar, Arunachal Pradesh

Kottayam, Nagaland

Ghaziabad, Jharkhand

Aurangabad, Nagaland

o 2 4 6 8 10 12 14 16
Number of Attacks

Figure 2 Distribution of Attacks by Geo-location

To further emphasize the spatial concentration of cyberattack activities, Table 2
presents a ranked list of the top 10 geo-locations with the highest number of
recorded incidents. Each entry includes the city and state, allowing for regional
context and cross-referencing with known cybersecurity infrastructure or
vulnerabilities in those areas. The data in Table 2 reinforces the pattern
illustrated in Figure 2, confirming that a small subset of geographic regions bears
a disproportionately high burden of cybersecurity threats. For instance, cities
such as Ghaziabad (across multiple states) and Kalyan-Dombivli appear
repeatedly in the top rankings, suggesting they are persistent targets. This could
be attributed to various factors, including network exposure, density of digital
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infrastructure, or insufficient protective mechanisms.

By identifying these high-risk regions, Table 2 provides actionable intelligence
for stakeholders aiming to implement region-specific defense strategies. It also
serves as a validation layer for subsequent clustering analysis, as the
concentration patterns observed here should ideally align with geo-spatial
clusters identified by unsupervised learning models such as K-Means and
DBSCAN.

Table 2 Top 10 Geo-locations by Attack Frequency

No. Geo-location Attack Frequency
1 Ghaziabad, Meghalaya 16
2 Kalyan-Dombivli, Jharkhand 15
3 Ghaziabad, Uttarakhand 14
4 Ghaziabad, Tripura 14
5 Motihari, Odisha 13
6 Srikakulam, Uttarakhand 13
7 Yamunanagar, Arunachal 13

Pradesh
8 Kottayam, Nagaland 13
9 Ghaziabad, Jharkhand 13
10 Aurangabad, Nagaland 13

Prior to the application of clustering algorithms, it is essential to conduct an
exploratory analysis of the relationships among selected features to ensure that
the input variables provide complementary rather than redundant information.
This step is critical for enhancing the quality and interpretability of the resulting
clusters, especially when using algorithms sensitive to feature scale and
dependency. Figure 3 presents a correlation heatmap that quantifies the linear
associations between key numerical attributes in the dataset, including Anomaly
Score, Severity Level, Packet Length, Source Port, and Destination Port. The
color gradient in the heatmap indicates the strength and direction of pairwise
correlations, with darker shades representing stronger positive or negative
relationships.

The visualized correlations offer twofold benefits. First, they help identify highly
correlated features, which could potentially introduce multicollinearity and distort
distance-based clustering outcomes such as K-Means. Second, the heatmap
highlights features that are weakly correlated or independent, which are ideal
candidates for inclusion in the clustering model due to their unique contribution
to variance within the dataset. From the heatmap, it can be observed that
Anomaly Score and Severity Level demonstrate a moderate positive correlation,
justifying their joint inclusion in the clustering pipeline. Conversely, Source Port
and Destination Port show near-zero correlation with each other and with other
features, suggesting that they may capture orthogonal dimensions of attack
behavior. These insights guide the selection of features used for dimensionality
reduction and clustering in the subsequent stages.

Latif and Riyadi (2025) J. Cyber. Law. 288



Journal of Cyber Law

Figure 3 Heatmap of Feature Correlation

The insights derived from Figure 3 substantiate the inclusion of critical features
such as Anomaly Score, Attack Type, and Severity Level in the clustering
models. These features exhibit meaningful statistical variation while avoiding
excessive multicollinearity, making them suitable inputs for unsupervised
learning. Their selection ensures that the clustering process captures diverse
dimensions of attack behavior—ranging from severity assessments to anomaly
detection signals—without the risk of feature redundancy that could bias cluster
formation.

With the feature space validated, clustering was performed using the K-Means
algorithm, a centroid-based partitioning method known for its scalability and
interpretability. To determine the optimal number of clusters (k), two evaluation
techniques were employed: the Elbow Method, which analyzes the Sum of
Squared Errors (SSE) across varying k values to detect the point of diminishing
returns; and the Silhouette Method, which measures how well each observation
fits within its assigned cluster relative to others. Based on these diagnostics,
three clusters (k=3) were identified as the most appropriate configuration. The
clustering outcome is illustrated in Figure 4, where the high-dimensional feature
space is projected into two dimensions using Principal Component Analysis
(PCA). This dimensionality reduction technique preserves as much variance as
possible, allowing for a more interpretable visualization of the cluster structure.
In the resulting plot, each data point is color-coded according to its cluster label,
revealing clear separation and compact groupings. The spatial arrangement of
clusters suggests that the selected features are effective in capturing distinct
behavioral patterns among cyberattacks, potentially corresponding to different
threat types, severities, or tactics used by adversaries.

This visualization provides preliminary evidence that the clustering model
successfully partitions the dataset into meaningful, non-overlapping groups,
which are further examined in subsequent sections to uncover their geographic
and behavioral characteristics.
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Figure 4 K-Means Clustering Result on Attack Data

To gain a deeper understanding of how the identified clusters are geographically
distributed, Figure 5 presents a geo-spatial visualization of the K-Means
clustering results. Each data point in this figure corresponds to a cybersecurity
incident, plotted using its simulated latitude and longitude coordinates derived
from the Geo-location Data field. The points are color-coded according to their
assigned cluster label from the K-Means algorithm.

This spatial representation reveals important patterns that are not immediately
evident from tabular or feature-space visualizations alone. For example, some
clusters appear to be regionally concentrated, indicating that specific types or
severities of cyber attacks may be more prevalent in certain geographic zones.
Other clusters are more widely dispersed, suggesting broader, perhaps more
generic attack behaviors that are not limited to particular locations. By overlaying
cluster membership onto geographic coordinates, Figure 5 enables cross-
validation of behavioral and spatial dimensions of the data. This is especially
important in the context of threat intelligence, where understanding where a
cluster of similar attacks is occurring can inform proactive mitigation strategies,
regional security policy decisions, and resource allocation for cyber defense.

The map also supports hypotheses regarding regional vulnerabilities or attack
vectors, and provides visual confirmation of the spatial coherence of the clusters
formed via K-Means. These insights are further quantified in Table 3, which
summarizes the dominant characteristics of each cluster, including average
anomaly scores, severity levels, and top geo-locations.
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Figure 5 Geo-spatial Cluster Mapping — K-Means

The visual patterns observed in Figure 5 are reinforced by the quantitative
analysis presented in Table 3, which summarizes key characteristics of each
cluster generated by the K-Means algorithm. This table provides a
comprehensive profile of the resulting clusters by reporting metrics such as the
number of attacks (cluster size), the most prevalent severity level, the average
anomaly score, and a sample of the most frequently occurring geo-locations
within each group. The inclusion of these metrics serves several purposes. First,
the cluster size highlights the relative proportion of incidents captured in each
group, indicating which behavioral profiles are more dominant within the dataset.
Second, the most common severity level offers insights into the typical threat
level associated with each cluster, ranging from low-risk anomalies to potentially
critical attacks. Third, the average anomaly score provides a statistical measure
of deviation from normal behavior, helping to differentiate between clusters that
may appear similar in size but vary significantly in threat intensity.

Lastly, the top geo-locations listed for each cluster help anchor the abstract
feature-based groupings to specific regions, allowing for spatial interpretation of
the attack patterns. For instance, one cluster may predominantly include attacks
from Ghaziabad and Kalyan-Dombivli, while another may reflect broader
regional dispersion. This contextual linkage between behavioral clustering and
geographic origin strengthens the interpretability and operational relevance of
the model.

Overall, Table 3 bridges the gap between the visual clustering structure shown
in Figure 4 and the spatial mapping in Figure 5 by providing concrete,
interpretable metrics that validate and enrich the clustering results.

Table 3 Cluster Characteristics — K-Means

Cluster Number Most Average Top Geo-locations
of Common Severity (Sample)
Attacks Severity Score
0 13,295 Medium 0.57 Ghaziabad, Meghalaya,
Kalyan-Dombivli, Jharkhand,
Kerala
1 12,789 High 2.00 Jabalpur, Chhattisgarh,
Munger, Tripura, Panipat
2 13,916 Medium 0.51 Adoni, Goa, Jharkhand,

Agartala, Sikkim
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Unlike K-Means, which partitions data based on distance to cluster centroids,
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
identifies clusters by locating high-density regions in the data space. One of its
key advantages is the ability to classify outlier or noise points—observations that
do not belong to any dense region—thus making it particularly suitable for
cybersecurity datasets where anomalies and irregular distributions are common.
In this context, DBSCAN helps uncover nuanced structures in cyberattack
behavior that may not conform to the assumptions of spherical or equally sized
clusters. Figure 6 presents the clustering result using DBSCAN projected onto
a two-dimensional PCA space. Each data point is color-coded according to its
assigned cluster, while noise points are shown in a neutral color (e.g., black or
gray) to distinguish them from structured groupings. The visualization shows
that DBSCAN successfully identifies several dense clusters representing
common attack patterns, as well as a substantial number of unclustered points,
which may correspond to unique or emerging threats. This flexible structure
allows for more granular threat detection and supports anomaly-based threat

intelligence strategies.
0
0 i“ i.‘i
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of Day
Figure 6 DBSCAN Clustering Result on Attack Data

=

Anomaly Scores

The spatial dimension of the DBSCAN clustering results is depicted in Figure 7,
which maps the identified clusters onto their corresponding geo-locations using
simulated latitude and longitude data. Each point on the map represents a
cybersecurity incident and is color-coded according to its DBSCAN-assigned
cluster label. This visualization enables a geographic interpretation of the
behavioral patterns uncovered by DBSCAN, allowing researchers and analysts
to observe regional concentrations of specific attack types or intensities.
Compared to the K-Means spatial mapping, Figure 7 provides greater
robustness in representing irregular densities, capturing clusters that may be
non-spherical, unevenly distributed, or loosely grouped, which are common
characteristics in real-world cyber attack data. Additionally, DBSCAN's ability to
classify noise points—shown as unclustered or isolated data on the map—adds
further analytical depth, highlighting locations with outlier attack behaviors or
emerging threats. This geographic insight is valuable for informing region-
specific cybersecurity strategies, such as targeted monitoring or adaptive
defense mechanisms.
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Figure 7 Geo-spatial Cluster Mapping

To support the spatial and behavioral patterns visualized in Figures 6 and 7,
Table 4 provides a comprehensive summary of the clustering results produced
by DBSCAN. It includes key metrics such as the number of attacks per cluster,
the prevalent severity level or attack type, the average anomaly score, and the
most frequently associated geo-locations for each cluster. Additionally, the table
distinguishes between core points (densely packed data belonging to clusters)
and noise points, which are excluded from all clusters due to their low local
density. This dual categorization enhances the interpretability of DBSCAN's
output by offering insight into both typical behaviors and anomalies. Compared
to K-Means, the DBSCAN results summarized in Table 4 reveal fewer but more
compact and meaningful clusters, alongside a non-negligible number of noise
points that reflect irregular or rare events. These clusters may represent highly
concentrated and potentially coordinated attack patterns that traditional
centroid-based methods might overlook or misclassify. Moreover, the presence
of distinct geo-location patterns within DBSCAN clusters affirms its strength in
capturing localized threat dynamics, making the model well-suited for region-
specific threat intelligence and anomaly detection in dynamic cyber
environments.

Table 4 Cluster Characteristics - DBSCAN

Number Most Average
Cluster Common Anomaly Top Geo-Locations
of Attacks -
Severity Score
Ghaziabad, Meghalaya;
. Kalyan-Dombivli,
0 40,000 Medium 50.11 Jharkhand; Ghaziabad,
Uttarakhand

To evaluate the effectiveness of the clustering models, Table 5 presents a
comparative analysis using three key performance metrics: the number of
clusters formed, the Silhouette Score, and the Davies-Bouldin Index. The results
indicate that K-Means outperformed DBSCAN in terms of cluster compactness
and separation, achieving a Silhouette Score of 0.23893 and a Davies-Bouldin
Index of 1.33, which suggest moderate cluster quality. On the other hand,
DBSCAN, while identifying fewer but denser clusters, did not yield valid metric
scores due to its density-based nature and the presence of many noise points.
Despite this, DBSCAN remains advantageous for detecting non-linear cluster
shapes and isolated anomalies, offering valuable insights in cases where attack
behavior does not conform to the assumptions of centroid-based algorithms.
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Table 5 Clustering Evaluation Metrics

Algorithm Number of Silhouette Score ~ Davies-Bouldin
Clusters Index
DBSCAN 0 N/A N/A
K-Means (k=3) 3 0.2389 1.3305

Figure 8 provides a visual comparison of the cluster size distributions produced
by K-Means and DBSCAN, complementing the quantitative evaluation in Table
5. The bar chart clearly illustrates how K-Means generates clusters of relatively
balanced sizes, reflecting its tendency to partition data evenly based on distance
to centroids. In contrast, DBSCAN results in a dominant single cluster
accompanied by a substantial number of noise points, showcasing its ability to
detect dense regions and isolate sparse or irregular data as outliers. This figure
reinforces the core distinction between the two algorithms: K-Means favors
structured, uniform clustering, while DBSCAN is more suited for identifying
dense behavioral hotspots and unstructured anomalies in cybersecurity attack
data.

40000 K:Means (k=6)
DBSCAN

35000

30000

8
€
£ 25000
®
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B 20000
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2 15000
10000

5000

0

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Cluster

Figure 8 Comparison of Cluster Sizes

Figure 9 presents the distribution of anomaly scores across clusters for both K-
Means and DBSCAN, offering deeper insight into each algorithm’s ability to
segment cyberattacks by severity. The plot reveals how each clustering
technique groups incidents with similar levels of threat, as measured by their
anomaly scores. Notably, DBSCAN clusters tend to exhibit higher median
anomaly scores, suggesting that the algorithm is particularly effective at isolating
dense, high-severity attack patterns. In comparison, K-Means shows a more
even distribution, with clusters capturing a broader range of anomaly levels. This
contrast emphasizes DBSCAN'’s strength in identifying potentially critical or
abnormal behaviors, while K-Means offers a more general segmentation of the
overall attack landscape.
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Figure 9 Cluster-wise Anomaly Score Distribution

Building upon the analysis in Figure 9, the distribution of anomaly scores across
clusters reinforces the interpretability of the clustering results. K-Means
clustering divides the data into well-defined groups with relatively symmetrical
score distributions, indicating a balanced categorization of attack severities. In
contrast, DBSCAN’s ability to identify dense regions allows it to isolate high-risk
anomalies more effectively, even if the total number of clusters is fewer. This
divergence highlights how each algorithm serves different analytical needs: K-
Means for broad segmentation and DBSCAN for detecting extreme or
concentrated behavior. Such insights are crucial when prioritizing response
strategies in cybersecurity operations.

Discussion

The clustering analysis conducted in this study aimed to uncover hidden
patterns within cybersecurity attack data using both K-Means and DBSCAN
algorithms. These two unsupervised learning methods were selected for their
contrasting mechanisms—K-Means for partitioning data into equally sized,
centroid-based clusters, and DBSCAN for identifying dense regions without prior
assumptions about the number of clusters. The results yielded a rich landscape
of insights that not only differentiate the capabilities of the two techniques but
also reveal distinct structural properties of cyberattack data. K-Means clustering,
evaluated across several metrics, showed an ability to generate interpretable
and well-distributed clusters. As shown in Figure 4 (PCA-based visualization),
the clusters derived from K-Means exhibited distinct separation, suggesting
meaningful partitioning based on the input features—namely, Anomaly Score,
Attack Type, and Severity Level. Figure 5 further reinforced these patterns
geographically, demonstrating that attacks grouped within the same cluster
often originated from proximate or related regions. The summary provided in
Table 3 elaborated on these patterns by showing that each cluster was
characterized by specific threat profiles, including dominant attack types and
average anomaly severity. Notably, K-Means formed three major clusters, each
reflecting a different level of threat intensity and geographical distribution. The
relatively high Silhouette Score (0.23893) and moderate Davies-Bouldin Index
(1.33) (Table 5) indicate a fair level of compactness and separability for an
inherently complex dataset.

On the other hand, DBSCAN offered a different perspective by emphasizing
local density rather than global structure. As illustrated in Figure 6, DBSCAN
effectively segmented high-density regions, which are often indicative of
focused or repetitive attack behavior. It also identified noise points—data
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instances that do not belong to any cluster—which may represent novel or
outlier threats that traditional clustering might overlook. Figure 7 mapped these
clusters spatially and revealed that DBSCAN captured geo-located clusters with
sharper density gradients. The summary statistics in Table 4 confirm that
DBSCAN, although forming fewer clusters, effectively isolates key regions of
concentrated attacks with higher anomaly severity scores. Importantly,
DBSCAN showed strength in detecting critical clusters with elevated median
anomaly scores (Figure 9), reinforcing its suitability for identifying high-risk
zones or anomalous threat behaviors. The comparison between the two
algorithms reveals several trade-offs. While K-Means provides structured
segmentation and consistent cluster sizing, it may miss anomalies or dense
pockets of activity. Conversely, DBSCAN is capable of uncovering localized,
high-severity attack clusters and excluding irrelevant noise, but lacks control
over the number of clusters formed. As noted in Table 5, the DBSCAN clustering
could not be evaluated using standard internal metrics like Silhouette Score due
to its treatment of noise points, which fall outside the defined cluster space.
Nevertheless, its qualitative results are compelling, especially for cybersecurity
applications that require high sensitivity to unusual patterns.

In operational contexts, these differences have direct implications. K-Means
clustering may be more appropriate for creating threat typologies, profiling
attacker behavior, or informing high-level security strategies. Its general
segmentation helps analysts categorize vast attack surfaces and prioritize areas
for further inspection. DBSCAN, in contrast, may be better suited for real-time
detection of anomalous activities, such as sudden spikes in attack volume or
new types of incidents appearing in dense clusters. Its ability to flag noise or
irregular threats makes it particularly valuable in environments where adaptive
threat intelligence is essential. Combining both approaches can enhance the
robustness of cybersecurity analytics. For instance, a two-step pipeline may first
apply K-Means to understand the global structure of the data, followed by
DBSCAN to zoom into clusters of high threat intensity or isolate emerging
anomalies. This hybrid strategy can offer both breadth and depth—helping
security teams make sense of the larger threat landscape while remaining
responsive to acute, evolving risks.

Overall, the findings affirm that clustering algorithms, when carefully selected
and tuned, can uncover latent structures within cybersecurity data that are not
readily observable through traditional rule-based systems. They enable the
transformation of raw attack logs into actionable intelligence, allowing for better
prioritization, faster incident response, and more adaptive cyber defense
mechanisms.

Conclusion

This research presents a comprehensive clustering-based analysis of a large-
scale cybersecurity attack dataset using both K-Means and DBSCAN
algorithms. By leveraging structured feature engineering, geospatial analysis,
and clustering evaluation metrics, the study successfully identifies hidden
patterns, regional concentrations, and severity groupings of cyberattacks. The
dual-algorithm approach facilitates a deeper understanding of how different
techniques can be used to detect and interpret complex threat behaviors across
thousands of incidents. K-Means clustering demonstrated the ability to partition
the dataset into well-separated and interpretable groups based on attack
characteristics such as anomaly score, severity level, and geographical origin.
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The algorithm’s reliance on centroid-based partitioning makes it effective for
broader segmentation of the attack landscape, yielding balanced clusters that
are easy to visualize and analyze. Figures 4 through 6 and Tables 3 and 5
support these findings by showing distinct cluster profiles and relatively high
silhouette scores, indicating good intra-cluster cohesion and inter-cluster
separation. In contrast, DBSCAN exhibited significant advantages in detecting
dense clusters and outlier (noise) points, which are particularly valuable for
isolating unusual or potentially critical cyber threats. Unlike K-Means, DBSCAN
does not require pre-specifying the number of clusters, making it adaptive to the
underlying structure of the data. As demonstrated in Figures 6 and 7 and Table
4, DBSCAN identified tightly packed clusters with high median anomaly scores
and separated noise points that may represent rare or emerging threat
behaviors. Although its clustering performance, measured by the silhouette and
Davies-Bouldin indices, was less optimal than K-Means, its robustness to
varying densities and capability to detect anomalies made it a valuable tool in
this context.

Overall, the comparative findings reveal that K-Means is more suitable for high-
level segmentation and strategic monitoring of general attack patterns, while
DBSCAN is better equipped to uncover localized, high-risk behaviors and
outliers. This suggests that both algorithms have complementary roles in cyber
threat intelligence workflows. Future work may extend this analysis by
incorporating time-series features, using hybrid clustering models, or integrating
supervised learning for post-clustering classification and threat prioritization.
Furthermore, deploying these clustering insights into real-time monitoring
systems could greatly enhance the early detection and mitigation of
sophisticated cyber threats.
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