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ABSTRACT 

The increasing volume and complexity of cybersecurity attacks present significant 

challenges for effective threat detection and response. This study applies 

unsupervised machine learning techniques K-Means and DBSCAN to analyze 40,000 

cyberattack records containing attributes such as anomaly scores, attack types, 

severity levels, and geographic locations. The goal is to uncover latent structures and 

regional patterns within the data that can inform threat intelligence and response 

strategies. Descriptive statistics and feature correlation analysis were performed as 

a foundation for clustering. K-Means clustering, guided by Elbow and Silhouette 

methods, identified three distinct clusters with balanced distributions and moderate 

separation (Silhouette Score = 0.23893; Davies-Bouldin Index = 1.33). In contrast, 

DBSCAN revealed dense pockets of attacks and successfully isolated noise points, 

capturing regions with higher anomaly severity. Geo-spatial visualizations and 

cluster-specific summaries showed that both algorithms provide valuable but 

complementary perspectives: K-Means offers interpretable groupings for strategic 

profiling, while DBSCAN excels at isolating high-risk outliers and concentrated attack 

behaviors. The findings demonstrate the utility of clustering-based approaches in 

extracting actionable insights from complex cyber threat data, paving the way for 

adaptive and region-sensitive cybersecurity defense frameworks. 

Keywords Cybersecurity, Clustering, K-Means, DBSCAN, Geo-spatial Analysis, Threat 

Intelligence, Anomaly Detection 

Introduction 

In the era of digital transformation, cybersecurity has emerged as a paramount 
concern for governments, corporations, and individuals alike [1]. The rapid 
expansion of internet-connected devices, cloud-based services, and digital 
infrastructures has not only enabled unprecedented convenience and 
productivity but has also introduced a complex and ever-evolving threat 
landscape [2]. Cyberattacks have become more frequent, targeted, and 
sophisticated—ranging from large-scale data breaches and ransomware 
incidents to stealthy advanced persistent threats (APTs) [3]. These attacks can 
disrupt essential services, compromise sensitive data, and cause significant 
economic and reputational damage. As organizations become increasingly 
reliant on digital technologies, the ability to detect, understand, and respond to 
cyber threats in a timely and accurate manner is more critical than ever [4]. 
Traditional cybersecurity defenses often rely on signature-based detection and 
rule-based systems, which struggle to keep up with zero-day exploits and novel 
attack vectors [5]. To address these limitations, the cybersecurity community 
has turned to data-driven approaches that leverage machine learning and 
artificial intelligence. Among these, unsupervised learning—and specifically 
clustering algorithms—has shown great promise in discovering latent patterns 
in large volumes of unlabeled security data. Clustering techniques can help 
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analysts group similar attack behaviors, identify abnormal patterns, and 
visualize the distribution of threats across time and space without the need for 
manual labeling. These capabilities are essential in transforming raw security 
logs into actionable insights for threat hunting, incident response, and risk 
mitigation. 

Two widely used clustering methods are K-Means and DBSCAN (Density-
Based Spatial Clustering of Applications with Noise). K-Means is a centroid-
based algorithm that partitions data into a pre-defined number of clusters by 
minimizing intra-cluster variance. It is computationally efficient and yields easily 
interpretable results but assumes spherical cluster shapes and struggles with 
noise. In contrast, DBSCAN is a density-based algorithm that groups closely 
packed points and designates outliers as noise, making it ideal for identifying 
irregular and anomalous patterns in complex data. Importantly, DBSCAN does 
not require prior knowledge of the number of clusters, which makes it particularly 
useful in exploratory analyses of heterogeneous cybersecurity data. 

This study explores the effectiveness of K-Means and DBSCAN in analyzing a 
real-world dataset consisting of 40,000 cybersecurity attack records. Each 
record contains key attributes such as anomaly score, severity level, attack type, 
and geo-location (city and region), allowing for both behavioral and spatial 
clustering. The research is driven by three main objectives: (1) to perform 
descriptive and statistical analysis of cyberattack features; (2) to apply and 
evaluate K-Means and DBSCAN in grouping attack behaviors and geo-
locations; and (3) to compare the clustering results using visual and quantitative 
metrics, including Silhouette Score and Davies-Bouldin Index. By integrating 
geo-aware clustering with traditional feature-based analysis, this research aims 
to contribute a novel framework for threat intelligence mapping—a visual and 
analytical representation of how cyber threats are distributed, evolve, and 
concentrate in specific regions. Such insights can help cybersecurity 
professionals prioritize mitigation efforts, allocate resources efficiently, and 
develop adaptive defense mechanisms that are sensitive to regional and 
behavioral risk variations. 

In summary, this paper demonstrates how unsupervised learning, specifically K-
Means and DBSCAN, can be effectively utilized to uncover meaningful clusters 
in cyberattack data. The results of this analysis support the development of more 
responsive, context-aware cybersecurity strategies capable of addressing the 
challenges of a dynamic and distributed threat environment. 

Literature Review 

The use of machine learning in cybersecurity has gained considerable traction 
as traditional rule-based systems struggle to detect novel and sophisticated 
cyber threats. Among the techniques employed, unsupervised learning, 
particularly clustering, has been recognized as an effective tool for grouping 
malicious behaviors and uncovering hidden patterns in unlabeled datasets. 
Clustering methods such as K-Means and DBSCAN are widely used in anomaly 
detection, intrusion detection systems (IDS), and cyber threat profiling. 

The K-Means algorithm has been employed in several cybersecurity 
applications due to its simplicity and interpretability. Zhang et al. [6] used K-
Means to detect abnormal network behavior in IoT environments, demonstrating 
that the algorithm could successfully group similar attack traffic. In [7], a 
clustering-based hybrid intrusion detection system combining K-Means and 
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classification methods improved detection accuracy for DDoS attacks. Alqahtani 
et al. [8] applied K-Means to cluster log data from security information and event 
management (SIEM) systems, supporting real-time alert triage. However, K-
Means assumes convex cluster shapes and requires prior knowledge of the 
number of clusters, making it less suitable for irregular or noisy attack patterns. 

To address this limitation, DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) has been increasingly used in cybersecurity studies. Its 
ability to detect clusters of arbitrary shape and isolate noise points makes it ideal 
for discovering outliers in attack datasets. Suthaharan [9] applied DBSCAN to 
isolate anomalies in IDS datasets, identifying stealthy attacks that were not 
captured by traditional classifiers. Similarly, Sharma and Sahay [10] utilized 
DBSCAN in wireless sensor networks (WSNs) to identify localized attack zones 
and false data injections. Other works, such as that by Uddin et al. [11], 
demonstrated that DBSCAN performed better than K-Means when applied to 
network log datasets with noise and overlapping patterns. 

Comparative analyses of clustering techniques have also been conducted. A 
study by García et al. [12] evaluated the performance of K-Means, DBSCAN, 
and hierarchical clustering in detecting attacks in the UNSW-NB15 dataset. The 
findings indicated that DBSCAN was more effective in detecting anomalous 
behaviors, while K-Means was more scalable for large datasets. Another 
comparative study by Shone et al. [13] examined deep autoencoders and 
clustering methods, highlighting that unsupervised models can outperform 
supervised ones when labeled data is limited. 

In recent years, research has started to explore the integration of geospatial 
features in cyber threat analysis. Ahmed et al. [14] used IP geolocation to cluster 
phishing attacks by country, revealing geographic hotspots of malicious activity. 
In [15], the authors visualized attack origins using heatmaps and clustering to 
support situational awareness dashboards. Lee et al. [16] proposed a threat 
mapping system based on clustering geo-tagged attacks, improving response 
prioritization for security operation centers (SOCs). However, many of these 
studies treat location as an auxiliary feature rather than a primary clustering 
dimension. 

Geo-aware clustering has been underexplored but presents a valuable direction 
for understanding how cyber threats concentrate spatially. In [17], the authors 
combined DBSCAN with latitude-longitude metadata to detect regionally 
concentrated malware campaigns. Similarly, Kumar et al. [18] introduced a 
location-sensitive anomaly detection model that improved the classification of 
APT campaigns by clustering IP activity in geographic clusters. Despite these 
advancements, few studies compare both behavioral and geospatial clustering 
comprehensively using multiple algorithms. 

This research builds upon and extends prior work by combining anomaly scores, 
attack severity, and geo-location data to perform a dual-clustering analysis using 
both K-Means and DBSCAN. By doing so, the study contributes a geo-aware 
framework for visualizing and quantifying the regional concentration of cyber 
threats, providing a foundation for improved threat intelligence mapping and 
regionally adaptive cybersecurity strategies. 

Methods 

This study employed a systematic methodology to perform clustering on 
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cyberattack data using both K-Means and DBSCAN, with emphasis on geo-
spatial analysis. The dataset consisted of 40,000 cybersecurity incident records, 
including key features such as anomaly_score, severity, attack_type, 
packet_length, source_port, destination_port, and geo-location. Initial data 
preprocessing involved the removal of incomplete records and transformation of 
categorical variables attack type and severity through one-hot and label 
encoding respectively. To standardize the numerical variables for clustering, 
Min-Max Normalization was applied. This ensures that all features lie within the 
same scale [0, 1] and is calculated using the following formula [19]: 

𝑥′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (1) 

After preprocessing, a correlation matrix was analyzed to select features that 
exhibit high variance and low collinearity. The final feature set included scaled 
anomaly_score, encoded attack_type, severity level, and port and packet 
statistics. Geo-location fields were transformed into frequency counts to capture 
regional attack densities. Dimensionality reduction was performed using 
Principal Component Analysis (PCA), allowing the data to be projected onto a 
2-dimensional plane for visualization while preserving as much variance as 
possible. 

The first clustering method applied was K-Means, which partitions the dataset 
into k clusters by minimizing the total within-cluster sum of squares. The 
objective function that K-Means attempts to minimize is given by [20]: 

𝐽 =∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 (2) 

𝐶𝑖   The set of points assigned to a cluster 𝑖 and 𝜇𝑖 is the centroid of that cluster. 

The optimal number of clusters 𝑘 was determined using the Elbow Method by 

plotting the total within-cluster sum of squared errors (SSE) against various 
values of 𝑘 and validated using the Silhouette Score, defined as [21]:  

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
 (3) 

𝑎(𝑖) is the average intra-cluster distance and 𝑏(𝑖) is the minimum average 

distance of a point 𝑖 to points in another cluster. 

In contrast, DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise) was applied to identify dense groupings without requiring the number of 
clusters as input. DBSCAN defines a cluster as a set of density-connected 
points. Two main parameters were tuned: 𝜖, the maximum distance between 

two points to be considered neighbors, and minPts, the minimum number of 
points required to form a dense region. Unlike K-Means, DBSCAN can detect 
outliers, which are marked as noise, and its clustering is robust to non-spherical 
cluster shapes. 

To evaluate and compare the clustering performance, two internal validation 
metrics were used: the Silhouette Score (as defined above) and the Davies-
Bouldin Index (DBI), which evaluates the average similarity between each 
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cluster and its most similar one. A lower DBI value indicates better clustering 
and is computed as [22]: 

DBI=
1

𝑘
∑max

𝑗≠𝑖
(
𝜎𝑖 + 𝜎𝑗

𝑑(𝑐𝑖 , 𝑐𝑗)
)

𝑘

𝑖=1

 (4) 

𝜎𝑖 is the average distance between each point in cluster 𝑖 and its centroid 𝑐𝑖, and 

𝑑(𝑐𝑖 , 𝑐𝑗) is the distance between centroids of clusters 𝑖 and 𝑗.  

To support geo-aware analysis, the resulting clusters were mapped onto their 
corresponding geographic locations using scatter plots and hexbin 
visualizations, enabling regional risk pattern identification. All analyses were 
conducted in Python 3.11 using libraries such as scikit-learn, pandas, matplotlib, 
seaborn, and plotly. 

Result 

This section elaborates on the results of the clustering analysis conducted using 
two unsupervised learning algorithms, K-Means and DBSCAN, on the 
cybersecurity attack dataset. The analysis is structured into five subsections: (1) 
a descriptive statistical overview of the dataset, (2) an assessment of feature 
correlations to support cluster input selection, (3) the outcomes of K-Means 
clustering, (4) the outcomes of DBSCAN clustering, and (5) a comparative 
evaluation between the two clustering methods based on key performance 
metrics and interpretability. The dataset comprises 40,000 records of 
cybersecurity incidents, each annotated with various attributes including 
Anomaly Score, Severity Level, Attack Type, Geo-location, Source and 
Destination Ports, and Packet Length. These incidents are distributed across a 
wide range of geographical locations in India and span a spectrum of severity 
levels. The preprocessing stage involved standardizing numerical features and 
transforming geo-location strings into simulated latitude and longitude values for 
spatial analysis. 

Table 1 provides summary statistics for three critical numerical features—
Source Port, Destination Port, and Packet Length—that were selected for 
clustering based on their relevance to network-level attack characterization. The 
descriptive statistics include measures of central tendency (mean, median), 
dispersion (standard deviation, interquartile range), and range (minimum to 
maximum), offering a foundational understanding of the distribution and 
variability within the dataset. This preliminary insight is essential to inform 
feature selection and scaling strategies for subsequent clustering procedures. 
In addition to the tabular summary, the spatial distribution of incidents across 
geo-locations is visualized in Figure 2, which highlights hotspot regions with 
unusually high attack frequencies. This geographic concentration is further 
quantified in Table 2, listing the top 10 locations with the highest incident counts. 
These initial explorations set the stage for applying clustering algorithms that 
aim to uncover latent groupings and spatial patterns in cyberattack behaviors. 

Table 1 Descriptive Statistics of Key Features 

Feature Count Mean 
Std 
Dev 

Min 25% Median 75% Max 

Source 40,000 32,970 18,560 1,027 16,851 32,856 48,928 65,530 
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Port 

Destination 
Port 

40,000 33,151 18,575 1,024 17,095 33,005 49,287 65,535 

Packet 
Length 

40,000 781.45 416.04 64 420 782 1,143 1,500 

To complement the numerical summary provided in Table 1, Figure 2 presents 
a bar chart that visualizes the frequency of cybersecurity attacks across all 
unique geo-locations included in the dataset. This visual representation enables 
a clearer understanding of the spatial distribution of attacks by aggregating the 
number of incidents associated with each geographic region. 

The figure reveals a pronounced concentration of attack occurrences in a 
relatively small number of locations, indicating the presence of cyberattack 
hotspots. These regions, such as Ghaziabad, Kalyan-Dombivli, and Motihari, 
consistently exhibit high incident counts, suggesting underlying vulnerabilities or 
patterns of repeated targeting. Such spatial clustering may reflect regional 
disparities in cybersecurity infrastructure, exposure levels, or monitoring 
capabilities. 

This geospatial insight is crucial for threat intelligence and resource allocation, 
as it highlights specific areas that warrant increased surveillance or defensive 
measures. The findings depicted in Figure 2 are further substantiated by Table 
2, which ranks the top 10 geo-locations by attack frequency, thereby reinforcing 
the observed patterns and offering actionable intelligence for cybersecurity 
professionals. 

 

Figure 2 Distribution of Attacks by Geo-location 

To further emphasize the spatial concentration of cyberattack activities, Table 2 
presents a ranked list of the top 10 geo-locations with the highest number of 
recorded incidents. Each entry includes the city and state, allowing for regional 
context and cross-referencing with known cybersecurity infrastructure or 
vulnerabilities in those areas. The data in Table 2 reinforces the pattern 
illustrated in Figure 2, confirming that a small subset of geographic regions bears 
a disproportionately high burden of cybersecurity threats. For instance, cities 
such as Ghaziabad (across multiple states) and Kalyan-Dombivli appear 
repeatedly in the top rankings, suggesting they are persistent targets. This could 
be attributed to various factors, including network exposure, density of digital 
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infrastructure, or insufficient protective mechanisms. 

By identifying these high-risk regions, Table 2 provides actionable intelligence 
for stakeholders aiming to implement region-specific defense strategies. It also 
serves as a validation layer for subsequent clustering analysis, as the 
concentration patterns observed here should ideally align with geo-spatial 
clusters identified by unsupervised learning models such as K-Means and 
DBSCAN. 

Table 2 Top 10 Geo-locations by Attack Frequency 

No. Geo-location Attack Frequency 

1 Ghaziabad, Meghalaya 16 

2 Kalyan-Dombivli, Jharkhand 15 

3 Ghaziabad, Uttarakhand 14 

4 Ghaziabad, Tripura 14 

5 Motihari, Odisha 13 

6 Srikakulam, Uttarakhand 13 

7 
Yamunanagar, Arunachal 

Pradesh 
13 

8 Kottayam, Nagaland 13 

9 Ghaziabad, Jharkhand 13 

10 Aurangabad, Nagaland 13 

Prior to the application of clustering algorithms, it is essential to conduct an 
exploratory analysis of the relationships among selected features to ensure that 
the input variables provide complementary rather than redundant information. 
This step is critical for enhancing the quality and interpretability of the resulting 
clusters, especially when using algorithms sensitive to feature scale and 
dependency. Figure 3 presents a correlation heatmap that quantifies the linear 
associations between key numerical attributes in the dataset, including Anomaly 
Score, Severity Level, Packet Length, Source Port, and Destination Port. The 
color gradient in the heatmap indicates the strength and direction of pairwise 
correlations, with darker shades representing stronger positive or negative 
relationships. 

The visualized correlations offer twofold benefits. First, they help identify highly 
correlated features, which could potentially introduce multicollinearity and distort 
distance-based clustering outcomes such as K-Means. Second, the heatmap 
highlights features that are weakly correlated or independent, which are ideal 
candidates for inclusion in the clustering model due to their unique contribution 
to variance within the dataset. From the heatmap, it can be observed that 
Anomaly Score and Severity Level demonstrate a moderate positive correlation, 
justifying their joint inclusion in the clustering pipeline. Conversely, Source Port 
and Destination Port show near-zero correlation with each other and with other 
features, suggesting that they may capture orthogonal dimensions of attack 
behavior. These insights guide the selection of features used for dimensionality 
reduction and clustering in the subsequent stages. 
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Figure 3 Heatmap of Feature Correlation 

The insights derived from Figure 3 substantiate the inclusion of critical features 
such as Anomaly Score, Attack Type, and Severity Level in the clustering 
models. These features exhibit meaningful statistical variation while avoiding 
excessive multicollinearity, making them suitable inputs for unsupervised 
learning. Their selection ensures that the clustering process captures diverse 
dimensions of attack behavior—ranging from severity assessments to anomaly 
detection signals—without the risk of feature redundancy that could bias cluster 
formation. 

With the feature space validated, clustering was performed using the K-Means 
algorithm, a centroid-based partitioning method known for its scalability and 
interpretability. To determine the optimal number of clusters (k), two evaluation 
techniques were employed: the Elbow Method, which analyzes the Sum of 
Squared Errors (SSE) across varying k values to detect the point of diminishing 
returns; and the Silhouette Method, which measures how well each observation 
fits within its assigned cluster relative to others. Based on these diagnostics, 
three clusters (k=3) were identified as the most appropriate configuration. The 
clustering outcome is illustrated in Figure 4, where the high-dimensional feature 
space is projected into two dimensions using Principal Component Analysis 
(PCA). This dimensionality reduction technique preserves as much variance as 
possible, allowing for a more interpretable visualization of the cluster structure. 
In the resulting plot, each data point is color-coded according to its cluster label, 
revealing clear separation and compact groupings. The spatial arrangement of 
clusters suggests that the selected features are effective in capturing distinct 
behavioral patterns among cyberattacks, potentially corresponding to different 
threat types, severities, or tactics used by adversaries. 

This visualization provides preliminary evidence that the clustering model 
successfully partitions the dataset into meaningful, non-overlapping groups, 
which are further examined in subsequent sections to uncover their geographic 
and behavioral characteristics. 
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Figure 4 K-Means Clustering Result on Attack Data 

To gain a deeper understanding of how the identified clusters are geographically 
distributed, Figure 5 presents a geo-spatial visualization of the K-Means 
clustering results. Each data point in this figure corresponds to a cybersecurity 
incident, plotted using its simulated latitude and longitude coordinates derived 
from the Geo-location Data field. The points are color-coded according to their 
assigned cluster label from the K-Means algorithm. 

This spatial representation reveals important patterns that are not immediately 
evident from tabular or feature-space visualizations alone. For example, some 
clusters appear to be regionally concentrated, indicating that specific types or 
severities of cyber attacks may be more prevalent in certain geographic zones. 
Other clusters are more widely dispersed, suggesting broader, perhaps more 
generic attack behaviors that are not limited to particular locations. By overlaying 
cluster membership onto geographic coordinates, Figure 5 enables cross-
validation of behavioral and spatial dimensions of the data. This is especially 
important in the context of threat intelligence, where understanding where a 
cluster of similar attacks is occurring can inform proactive mitigation strategies, 
regional security policy decisions, and resource allocation for cyber defense. 

The map also supports hypotheses regarding regional vulnerabilities or attack 
vectors, and provides visual confirmation of the spatial coherence of the clusters 
formed via K-Means. These insights are further quantified in Table 3, which 
summarizes the dominant characteristics of each cluster, including average 
anomaly scores, severity levels, and top geo-locations. 
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Figure 5 Geo-spatial Cluster Mapping – K-Means 

The visual patterns observed in Figure 5 are reinforced by the quantitative 
analysis presented in Table 3, which summarizes key characteristics of each 
cluster generated by the K-Means algorithm. This table provides a 
comprehensive profile of the resulting clusters by reporting metrics such as the 
number of attacks (cluster size), the most prevalent severity level, the average 
anomaly score, and a sample of the most frequently occurring geo-locations 
within each group. The inclusion of these metrics serves several purposes. First, 
the cluster size highlights the relative proportion of incidents captured in each 
group, indicating which behavioral profiles are more dominant within the dataset. 
Second, the most common severity level offers insights into the typical threat 
level associated with each cluster, ranging from low-risk anomalies to potentially 
critical attacks. Third, the average anomaly score provides a statistical measure 
of deviation from normal behavior, helping to differentiate between clusters that 
may appear similar in size but vary significantly in threat intensity. 

Lastly, the top geo-locations listed for each cluster help anchor the abstract 
feature-based groupings to specific regions, allowing for spatial interpretation of 
the attack patterns. For instance, one cluster may predominantly include attacks 
from Ghaziabad and Kalyan-Dombivli, while another may reflect broader 
regional dispersion. This contextual linkage between behavioral clustering and 
geographic origin strengthens the interpretability and operational relevance of 
the model. 

Overall, Table 3 bridges the gap between the visual clustering structure shown 
in Figure 4 and the spatial mapping in Figure 5 by providing concrete, 
interpretable metrics that validate and enrich the clustering results. 

Table 3 Cluster Characteristics – K-Means 

Cluster Number 
of 
Attacks 

Most 
Common 
Severity 

Average 
Severity 
Score 

Top Geo-locations 
(Sample) 

0 13,295 Medium 0.57 Ghaziabad, Meghalaya, 
Kalyan-Dombivli, Jharkhand, 
Kerala 

1 12,789 High 2.00 Jabalpur, Chhattisgarh, 
Munger, Tripura, Panipat 

2 13,916 Medium 0.51 Adoni, Goa, Jharkhand, 
Agartala, Sikkim 
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Unlike K-Means, which partitions data based on distance to cluster centroids, 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 
identifies clusters by locating high-density regions in the data space. One of its 
key advantages is the ability to classify outlier or noise points—observations that 
do not belong to any dense region—thus making it particularly suitable for 
cybersecurity datasets where anomalies and irregular distributions are common. 
In this context, DBSCAN helps uncover nuanced structures in cyberattack 
behavior that may not conform to the assumptions of spherical or equally sized 
clusters. Figure 6 presents the clustering result using DBSCAN projected onto 
a two-dimensional PCA space. Each data point is color-coded according to its 
assigned cluster, while noise points are shown in a neutral color (e.g., black or 
gray) to distinguish them from structured groupings. The visualization shows 
that DBSCAN successfully identifies several dense clusters representing 
common attack patterns, as well as a substantial number of unclustered points, 
which may correspond to unique or emerging threats. This flexible structure 
allows for more granular threat detection and supports anomaly-based threat 
intelligence strategies. 

 

Figure 6 DBSCAN Clustering Result on Attack Data 

The spatial dimension of the DBSCAN clustering results is depicted in Figure 7, 
which maps the identified clusters onto their corresponding geo-locations using 
simulated latitude and longitude data. Each point on the map represents a 
cybersecurity incident and is color-coded according to its DBSCAN-assigned 
cluster label. This visualization enables a geographic interpretation of the 
behavioral patterns uncovered by DBSCAN, allowing researchers and analysts 
to observe regional concentrations of specific attack types or intensities. 
Compared to the K-Means spatial mapping, Figure 7 provides greater 
robustness in representing irregular densities, capturing clusters that may be 
non-spherical, unevenly distributed, or loosely grouped, which are common 
characteristics in real-world cyber attack data. Additionally, DBSCAN’s ability to 
classify noise points—shown as unclustered or isolated data on the map—adds 
further analytical depth, highlighting locations with outlier attack behaviors or 
emerging threats. This geographic insight is valuable for informing region-
specific cybersecurity strategies, such as targeted monitoring or adaptive 
defense mechanisms. 



Journal of Cyber Law  

 

Latif and Riyadi (2025) J. Cyber. Law. 

 

293 

 

 

 

Figure 7 Geo-spatial Cluster Mapping 

To support the spatial and behavioral patterns visualized in Figures 6 and 7, 
Table 4 provides a comprehensive summary of the clustering results produced 
by DBSCAN. It includes key metrics such as the number of attacks per cluster, 
the prevalent severity level or attack type, the average anomaly score, and the 
most frequently associated geo-locations for each cluster. Additionally, the table 
distinguishes between core points (densely packed data belonging to clusters) 
and noise points, which are excluded from all clusters due to their low local 
density. This dual categorization enhances the interpretability of DBSCAN's 
output by offering insight into both typical behaviors and anomalies. Compared 
to K-Means, the DBSCAN results summarized in Table 4 reveal fewer but more 
compact and meaningful clusters, alongside a non-negligible number of noise 
points that reflect irregular or rare events. These clusters may represent highly 
concentrated and potentially coordinated attack patterns that traditional 
centroid-based methods might overlook or misclassify. Moreover, the presence 
of distinct geo-location patterns within DBSCAN clusters affirms its strength in 
capturing localized threat dynamics, making the model well-suited for region-
specific threat intelligence and anomaly detection in dynamic cyber 
environments. 

Table 4 Cluster Characteristics – DBSCAN 

Cluster 
Number 

of Attacks 

Most 
Common 
Severity 

Average 
Anomaly 

Score 
Top Geo-Locations 

0 40,000 Medium 50.11 

Ghaziabad, Meghalaya; 
Kalyan-Dombivli, 

Jharkhand; Ghaziabad, 
Uttarakhand 

To evaluate the effectiveness of the clustering models, Table 5 presents a 
comparative analysis using three key performance metrics: the number of 
clusters formed, the Silhouette Score, and the Davies-Bouldin Index. The results 
indicate that K-Means outperformed DBSCAN in terms of cluster compactness 
and separation, achieving a Silhouette Score of 0.23893 and a Davies-Bouldin 
Index of 1.33, which suggest moderate cluster quality. On the other hand, 
DBSCAN, while identifying fewer but denser clusters, did not yield valid metric 
scores due to its density-based nature and the presence of many noise points. 
Despite this, DBSCAN remains advantageous for detecting non-linear cluster 
shapes and isolated anomalies, offering valuable insights in cases where attack 
behavior does not conform to the assumptions of centroid-based algorithms. 
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Table 5 Clustering Evaluation Metrics 

Algorithm 
Number of 
Clusters 

Silhouette Score 
Davies-Bouldin 

Index 

DBSCAN 0 N/A N/A 

K-Means (k=3) 3 0.2389 1.3305 

Figure 8 provides a visual comparison of the cluster size distributions produced 
by K-Means and DBSCAN, complementing the quantitative evaluation in Table 
5. The bar chart clearly illustrates how K-Means generates clusters of relatively 
balanced sizes, reflecting its tendency to partition data evenly based on distance 
to centroids. In contrast, DBSCAN results in a dominant single cluster 
accompanied by a substantial number of noise points, showcasing its ability to 
detect dense regions and isolate sparse or irregular data as outliers. This figure 
reinforces the core distinction between the two algorithms: K-Means favors 
structured, uniform clustering, while DBSCAN is more suited for identifying 
dense behavioral hotspots and unstructured anomalies in cybersecurity attack 
data. 

 

Figure 8 Comparison of Cluster Sizes 

Figure 9 presents the distribution of anomaly scores across clusters for both K-
Means and DBSCAN, offering deeper insight into each algorithm’s ability to 
segment cyberattacks by severity. The plot reveals how each clustering 
technique groups incidents with similar levels of threat, as measured by their 
anomaly scores. Notably, DBSCAN clusters tend to exhibit higher median 
anomaly scores, suggesting that the algorithm is particularly effective at isolating 
dense, high-severity attack patterns. In comparison, K-Means shows a more 
even distribution, with clusters capturing a broader range of anomaly levels. This 
contrast emphasizes DBSCAN’s strength in identifying potentially critical or 
abnormal behaviors, while K-Means offers a more general segmentation of the 
overall attack landscape. 
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Figure 9 Cluster-wise Anomaly Score Distribution 

Building upon the analysis in Figure 9, the distribution of anomaly scores across 
clusters reinforces the interpretability of the clustering results. K-Means 
clustering divides the data into well-defined groups with relatively symmetrical 
score distributions, indicating a balanced categorization of attack severities. In 
contrast, DBSCAN’s ability to identify dense regions allows it to isolate high-risk 
anomalies more effectively, even if the total number of clusters is fewer. This 
divergence highlights how each algorithm serves different analytical needs: K-
Means for broad segmentation and DBSCAN for detecting extreme or 
concentrated behavior. Such insights are crucial when prioritizing response 
strategies in cybersecurity operations. 

Discussion 

The clustering analysis conducted in this study aimed to uncover hidden 
patterns within cybersecurity attack data using both K-Means and DBSCAN 
algorithms. These two unsupervised learning methods were selected for their 
contrasting mechanisms—K-Means for partitioning data into equally sized, 
centroid-based clusters, and DBSCAN for identifying dense regions without prior 
assumptions about the number of clusters. The results yielded a rich landscape 
of insights that not only differentiate the capabilities of the two techniques but 
also reveal distinct structural properties of cyberattack data. K-Means clustering, 
evaluated across several metrics, showed an ability to generate interpretable 
and well-distributed clusters. As shown in Figure 4 (PCA-based visualization), 
the clusters derived from K-Means exhibited distinct separation, suggesting 
meaningful partitioning based on the input features—namely, Anomaly Score, 
Attack Type, and Severity Level. Figure 5 further reinforced these patterns 
geographically, demonstrating that attacks grouped within the same cluster 
often originated from proximate or related regions. The summary provided in 
Table 3 elaborated on these patterns by showing that each cluster was 
characterized by specific threat profiles, including dominant attack types and 
average anomaly severity. Notably, K-Means formed three major clusters, each 
reflecting a different level of threat intensity and geographical distribution. The 
relatively high Silhouette Score (0.23893) and moderate Davies-Bouldin Index 
(1.33) (Table 5) indicate a fair level of compactness and separability for an 
inherently complex dataset. 

On the other hand, DBSCAN offered a different perspective by emphasizing 
local density rather than global structure. As illustrated in Figure 6, DBSCAN 
effectively segmented high-density regions, which are often indicative of 
focused or repetitive attack behavior. It also identified noise points—data 
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instances that do not belong to any cluster—which may represent novel or 
outlier threats that traditional clustering might overlook. Figure 7 mapped these 
clusters spatially and revealed that DBSCAN captured geo-located clusters with 
sharper density gradients. The summary statistics in Table 4 confirm that 
DBSCAN, although forming fewer clusters, effectively isolates key regions of 
concentrated attacks with higher anomaly severity scores. Importantly, 
DBSCAN showed strength in detecting critical clusters with elevated median 
anomaly scores (Figure 9), reinforcing its suitability for identifying high-risk 
zones or anomalous threat behaviors. The comparison between the two 
algorithms reveals several trade-offs. While K-Means provides structured 
segmentation and consistent cluster sizing, it may miss anomalies or dense 
pockets of activity. Conversely, DBSCAN is capable of uncovering localized, 
high-severity attack clusters and excluding irrelevant noise, but lacks control 
over the number of clusters formed. As noted in Table 5, the DBSCAN clustering 
could not be evaluated using standard internal metrics like Silhouette Score due 
to its treatment of noise points, which fall outside the defined cluster space. 
Nevertheless, its qualitative results are compelling, especially for cybersecurity 
applications that require high sensitivity to unusual patterns. 

In operational contexts, these differences have direct implications. K-Means 
clustering may be more appropriate for creating threat typologies, profiling 
attacker behavior, or informing high-level security strategies. Its general 
segmentation helps analysts categorize vast attack surfaces and prioritize areas 
for further inspection. DBSCAN, in contrast, may be better suited for real-time 
detection of anomalous activities, such as sudden spikes in attack volume or 
new types of incidents appearing in dense clusters. Its ability to flag noise or 
irregular threats makes it particularly valuable in environments where adaptive 
threat intelligence is essential. Combining both approaches can enhance the 
robustness of cybersecurity analytics. For instance, a two-step pipeline may first 
apply K-Means to understand the global structure of the data, followed by 
DBSCAN to zoom into clusters of high threat intensity or isolate emerging 
anomalies. This hybrid strategy can offer both breadth and depth—helping 
security teams make sense of the larger threat landscape while remaining 
responsive to acute, evolving risks. 

Overall, the findings affirm that clustering algorithms, when carefully selected 
and tuned, can uncover latent structures within cybersecurity data that are not 
readily observable through traditional rule-based systems. They enable the 
transformation of raw attack logs into actionable intelligence, allowing for better 
prioritization, faster incident response, and more adaptive cyber defense 
mechanisms. 

Conclusion 

This research presents a comprehensive clustering-based analysis of a large-
scale cybersecurity attack dataset using both K-Means and DBSCAN 
algorithms. By leveraging structured feature engineering, geospatial analysis, 
and clustering evaluation metrics, the study successfully identifies hidden 
patterns, regional concentrations, and severity groupings of cyberattacks. The 
dual-algorithm approach facilitates a deeper understanding of how different 
techniques can be used to detect and interpret complex threat behaviors across 
thousands of incidents. K-Means clustering demonstrated the ability to partition 
the dataset into well-separated and interpretable groups based on attack 
characteristics such as anomaly score, severity level, and geographical origin. 
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The algorithm’s reliance on centroid-based partitioning makes it effective for 
broader segmentation of the attack landscape, yielding balanced clusters that 
are easy to visualize and analyze. Figures 4 through 6 and Tables 3 and 5 
support these findings by showing distinct cluster profiles and relatively high 
silhouette scores, indicating good intra-cluster cohesion and inter-cluster 
separation. In contrast, DBSCAN exhibited significant advantages in detecting 
dense clusters and outlier (noise) points, which are particularly valuable for 
isolating unusual or potentially critical cyber threats. Unlike K-Means, DBSCAN 
does not require pre-specifying the number of clusters, making it adaptive to the 
underlying structure of the data. As demonstrated in Figures 6 and 7 and Table 
4, DBSCAN identified tightly packed clusters with high median anomaly scores 
and separated noise points that may represent rare or emerging threat 
behaviors. Although its clustering performance, measured by the silhouette and 
Davies-Bouldin indices, was less optimal than K-Means, its robustness to 
varying densities and capability to detect anomalies made it a valuable tool in 
this context. 

Overall, the comparative findings reveal that K-Means is more suitable for high-
level segmentation and strategic monitoring of general attack patterns, while 
DBSCAN is better equipped to uncover localized, high-risk behaviors and 
outliers. This suggests that both algorithms have complementary roles in cyber 
threat intelligence workflows. Future work may extend this analysis by 
incorporating time-series features, using hybrid clustering models, or integrating 
supervised learning for post-clustering classification and threat prioritization. 
Furthermore, deploying these clustering insights into real-time monitoring 
systems could greatly enhance the early detection and mitigation of 
sophisticated cyber threats. 
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